Substitution p.A350V in Na+/Mg2+ Exchanger SLC41A1, Potentially Associated with Parkinson's Disease, Is a Gain-of-Function Mutation

نویسندگان

  • Martin Kolisek
  • Gerhard Sponder
  • Lucia Mastrototaro
  • Alina Smorodchenko
  • Pierre Launay
  • Juergen Vormann
  • Monika Schweigel-Röntgen
چکیده

Parkinson's disease (PD) is a complex multifactorial ailment predetermined by the interplay of various environmental and genetic factors. Systemic and intracellular magnesium (Mg) deficiency has long been suspected to contribute to the development and progress of PD and other neurodegenerative diseases. However, the molecular background is unknown. Interestingly, gene SLC41A1 located in the novel PD locus PARK16 has recently been identified as being a Na⁺/Mg²⁺ exchanger (NME, Mg²⁺ efflux system), a key component of cellular magnesium homeostasis. Here, we demonstrate that the substitution p.A350V potentially associated with PD is a gain-of-function mutation that enhances a core function of SLC41A1, namely Na⁺-dependent Mg²⁺ efflux by 69±10% under our experimental conditions (10-minute incubation in high-Na⁺ (145 mM) and completely Mg²⁺-free medium). The increased efflux capacity is accompanied by an insensitivity of mutant NME to cAMP stimulation suggesting disturbed hormonal regulation and leads to a reduced proliferation rate in p.A350V compared with wt cells. We hypothesize that enhanced Mg²⁺-efflux conducted by SLC41A1 variant p.A350V might result, in the long-term, in chronic intracellular Mg²⁺-deficiency, a condition that is found in various brain regions of PD patients and that exacerbates processes triggering neuronal damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of Na+/Mg2+ exchanger SLC41A1 attenuates pro-survival signaling

The Na+/Mg2+ exchanger SLC41A1 (A1), a key component of intracellular Mg homeostasis (IMH), is the major cellular Mg2+ efflux system, and its overexpression decreases [Mg2+]intracellular. IMH plays an important role in the regulation of many cellular processes, including cellular signaling. However, whether the overexpression of A1 and the consequent drop of [Mg2+]i impact on intracellular sign...

متن کامل

Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters.

We have begun to identify and characterize genes that are differentially expressed with low magnesium. One of these sequences conformed to the solute carrier SLC41A1. Real-time RT-PCR of RNA isolated from renal distal tubule epithelial [mouse distal convoluted tubule (MDCT)] cells cultured in low-magnesium media relative to normal media and in the kidney cortex of mice maintained on low-magnesi...

متن کامل

Abnormal regulation of Mg2+ transport via Na/Mg exchanger in sickle erythrocytes.

Erythrocyte magnesium (Mg2+) deficiency has been demonstrated in sickle cell disease to contribute to erythrocyte dehydration, K loss, and thus sickling. No studies have assessed the functional properties of the Na/Mg exchanger in sickle cell disease. Using Mg(2+)-loaded erythrocytes, we measured Mg2+ efflux induced by extracellular Na+. We estimated that the Na/Mg exchanger had higher maximal ...

متن کامل

Na+/Mg2+ antiport in erythrocytes of spontaneously hypertensive rats: role of Mg2+ in the pathogenesis of hypertension.

Total Mg2+ content in plasma and erythrocytes did not significantly differ between WKY and SHR. Mg2+ efflux via Na+/Mg2+ antiport was 10% lower in non Mg(2+)-loaded erythrocytes of SHR than in WKY, and 16% lower in Mg(2+)-loaded erythrocytes of SHR. The activation of Na+/Mg2+ antiport in erythrocytes by Cl-, as tested by substitution of Cl- with SCN-, and the regulation of Na+/Mg2+ antiport by ...

متن کامل

CrossTalk opposing view: CNNM proteins are not Na+/Mg2+ exchangers but Mg2+ transport regulators playing a central role in transepithelial Mg2+ (re)absorption

Magnesium (Mg2+) is indispensable for many physiological processes in the cell impacting organ function (de Baaij et al. 2015). Intracellular concentrations of free Mg2+ aremaintained within a narrow range (0.5–1.2 mM) through tightly regulated Mg2+ influx and effluxmechanisms (Ebel & Gunther, 1980). InhibitionofMg2+ effluxby substitution of extracellular Na+ by choline in mammalian cells indic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013